MapReduce高级案例⑩

流量汇总程序案例

[infobox title=”标题内容”]

统计手机号耗费的总上行流量、下行流量、总流量(序列化)

Map阶段:
(1)读取一行数据,切分字段
(2)抽取手机号、上行流量、下行流量
(3)以手机号为key,bean对象为value输出,即context.write(手机号,bean);
Reduce阶段:
(1)累加上行流量和下行流量得到总流量。
(2)实现自定义的bean来封装流量信息,并将bean作为map输出的key来传输
(3)MR程序在处理数据的过程中会对数据排序(map输出的kv对传输到reduce之前,会排序),排序的依据是map输出的key
所以,我们如果要实现自己需要的排序规则,则可以考虑将排序因素放到key中,让key实现接口:WritableComparable。
然后重写key的compareTo方法。
[collapse title=”phone_date.txt”]

13726230503	00-FD-07-A4-72-B8:CMCC	120.196.100.82	i02.c.aliimg.com		24	27	2481	24681	200
13826544101	5C-0E-8B-C7-F1-E0:CMCC	120.197.40.4			4	0	264	0	200
13926435656	20-10-7A-28-CC-0A:CMCC	120.196.100.99			2	4	132	1512	200
13926251106	5C-0E-8B-8B-B1-50:CMCC	120.197.40.4			4	0	240	0	200
18211575961	94-71-AC-CD-E6-18:CMCC-EASY	120.196.100.99	iface.qiyi.com	视频网站	15	12	1527	2106	200
84138413	5C-0E-8B-8C-E8-20:7DaysInn	120.197.40.4	122.72.52.12		20	16	4116	1432	200
13560439658	C4-17-FE-BA-DE-D9:CMCC	120.196.100.99			18	15	1116	954	200
15920133257	5C-0E-8B-C7-BA-20:CMCC	120.197.40.4	sug.so.360.cn	信息安全	20	20	3156	2936	200
13719199419	68-A1-B7-03-07-B1:CMCC-EASY	120.196.100.82			4	0	240	0	200
13660577991	5C-0E-8B-92-5C-20:CMCC-EASY	120.197.40.4	s19.cnzz.com	站点统计	24	9	6960	690	200
15013685858	5C-0E-8B-C7-F7-90:CMCC	120.197.40.4	rank.ie.sogou.com	搜索引擎	28	27	3659	3538	200
15989002119	E8-99-C4-4E-93-E0:CMCC-EASY	120.196.100.99	www.umeng.com	站点统计	3	3	1938	180	200
13560439658	C4-17-FE-BA-DE-D9:CMCC	120.196.100.99			15	9	918	4938	200
13480253104	5C-0E-8B-C7-FC-80:CMCC-EASY	120.197.40.4			3	3	180	180	200
13602846565	5C-0E-8B-8B-B6-00:CMCC	120.197.40.4	2052.flash2-http.qq.com	综合门户	15	12	1938	2910	200
13922314466	00-FD-07-A2-EC-BA:CMCC	120.196.100.82	img.qfc.cn		12	12	3008	3720	200
13502468823	5C-0A-5B-6A-0B-D4:CMCC-EASY	120.196.100.99	y0.ifengimg.com	综合门户	57	102	7335	110349	200
18320173382	84-25-DB-4F-10-1A:CMCC-EASY	120.196.100.99	input.shouji.sogou.com	搜索引擎	21	18	9531	2412	200
13925057413	00-1F-64-E1-E6-9A:CMCC	120.196.100.55	t3.baidu.com	搜索引擎	69	63	11058	48243	200
13760778710	00-FD-07-A4-7B-08:CMCC	120.196.100.82			2	2	120	120	200
13560436666	00-FD-07-A4-72-B8:CMCC	120.196.100.82	i02.c.aliimg.com		24	27	2481	24681	200
13560436666	C4-17-FE-BA-DE-D9:CMCC	120.196.100.99			18	15	1116	954	200

[/collapse]
[/infobox]
[infobox title=”code”]
[collapse title=”FlowBean”]

package com.kami.demo02;

import org.apache.hadoop.io.Writable;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

/**
 * @version v 1.0
 * @Author kamisamak
 * @Date 2020/6/17
 */
public class FlowBean implements Writable {

    private long upFlow;
    private long downFlow;
    private long sumFlow;

    // 反序列化时,需要反射调用空参构造函数,所以必须有
    public FlowBean() {
        super();
    }

    public FlowBean(long upFlow, long downFlow) {
        super();
        this.upFlow = upFlow;
        this.downFlow = downFlow;
        this.sumFlow = upFlow + downFlow;
    }

    public long getSumFlow() {
        return sumFlow;
    }

    public void setSumFlow(long sumFlow) {
        this.sumFlow = sumFlow;
    }

    public long getUpFlow() {
        return upFlow;
    }

    public void setUpFlow(long upFlow) {
        this.upFlow = upFlow;
    }

    public long getDownFlow() {
        return downFlow;
    }

    public void setDownFlow(long downFlow) {
        this.downFlow = downFlow;
    }

    /**
     * 序列化方法
     *
     * @param out
     * @throws IOException
     */
    @Override
    public void write(DataOutput out) throws IOException {
        out.writeLong(upFlow);
        out.writeLong(downFlow);
        out.writeLong(sumFlow);
    }

    /**
     * 反序列化方法
     注意反序列化的顺序和序列化的顺序完全一致
     *
     * @param in
     * @throws IOException
     */
    @Override
    public void readFields(DataInput in) throws IOException {
        upFlow = in.readLong();
        downFlow = in.readLong();
        sumFlow = in.readLong();
    }

    @Override
    public String toString() {
        return upFlow + "\t" + downFlow + "\t" + sumFlow;
    }
}

[/collapse]
[collapse title=”FlowCount”]

package com.kami.demo02;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;

/**
 * @version v 1.0
 * @Author kamisamak
 * @Date 2020/6/17
 */
public class FlowCount {

    static class FlowCountMapper extends Mapper<LongWritable, Text, Text, FlowBean> {

        @Override
        protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
            // 1 将一行内容转成string
            String ling = value.toString();

            // 2 切分字段
            String[] fields = ling.split("\t");

            // 3 取出手机号码
            String phoneNum = fields[1];

            // 4 取出上行流量和下行流量
            long upFlow = Long.parseLong(fields[fields.length - 3]);
            long downFlow = Long.parseLong(fields[fields.length - 2]);

            // 5 写出数据
            context.write(new Text(phoneNum), new FlowBean(upFlow, downFlow));
        }
    }

    static class FlowCountReducer extends Reducer<Text, FlowBean, Text, FlowBean> {
        @Override
        protected void reduce(Text key, Iterable values, Context context)
                throws IOException, InterruptedException {
            long sum_upFlow = 0;
            long sum_downFlow = 0;

            // 1 遍历所用bean,将其中的上行流量,下行流量分别累加
            for (FlowBean bean : values) {
                sum_upFlow += bean.getUpFlow();
                sum_downFlow += bean.getDownFlow();
            }

            // 2 封装对象
            FlowBean resultBean = new FlowBean(sum_upFlow, sum_downFlow);
            context.write(key, resultBean);
        }
    }

    public static void main(String[] args) throws Exception {
        args = new String[]{"data\\d02","output\\d02"};

        // 1 获取配置信息,或者job对象实例
        Configuration configuration = new Configuration();
        Job job = Job.getInstance(configuration);

        // 6 指定本程序的jar包所在的本地路径
        job.setJarByClass(FlowCount.class);

        // 2 指定本业务job要使用的mapper/Reducer业务类
        job.setMapperClass(FlowCountMapper.class);
        job.setReducerClass(FlowCountReducer.class);

        // 3 指定mapper输出数据的kv类型
        job.setMapOutputKeyClass(Text.class);
        job.setMapOutputValueClass(FlowBean.class);

        // 4 指定最终输出的数据的kv类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(FlowBean.class);

        // 5 指定job的输入原始文件所在目录
        FileInputFormat.setInputPaths(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));

        // 7 将job中配置的相关参数,以及job所用的java类所在的jar包, 提交给yarn去运行
        boolean result = job.waitForCompletion(true);
        System.exit(result ? 0 : 1);
    }
}

[/collapse]
[/infobox]
[infobox title=”自定义分区”]
将统计结果按照手机归属地不同省份输出到不同文件中(Partitioner)
[collapse title=”ProvincePartitioner”]

package com.kami.demo02;

import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Partitioner;

/**
 * @version v 1.0
 * @Author kamisamak
 * @Date 2020/6/17
 */
public class ProvincePartitioner extends Partitioner<Text, FlowBean> {
    @Override
    public int getPartition(Text key, FlowBean value, int numPartitions) {
// 1 获取电话号码的前三位
        String preNum = key.toString().substring(0, 3);
        int partition = 4;
        // 2 判断是哪个省
        if ("136".equals(preNum)) {
            partition = 0;
        }else if ("137".equals(preNum)) {
            partition = 1;
        }else if ("138".equals(preNum)) {
            partition = 2;
        }else if ("139".equals(preNum)) {
            partition = 3;
        }
        return partition;
    }
}

[/collapse]
在Driver中指定job.setPartitionerClass(ProvincePartitioner.class);
[/infobox]
[infobox title=”自定义全排序”]
将统计结果按照总流量倒序排序(全排序)
(1)把程序分两步走,第一步正常统计总流量,第二步再把结果进行排序
(2)context.write(总流量,手机号)
(3)FlowBean实现WritableComparable接口重写compareTo方法
[collapse title=”FlowCountSort”]

package com.kami.demo03;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import java.io.IOException;

/**
 * @version v 1.0
 * @Author kamisamak
 * @Date 2020/6/17
 */
public class FlowCountSort {
    static class FlowCountSortMapper extends Mapper<LongWritable, Text, FlowBean, Text> {
        FlowBean bean = new FlowBean();
        Text v = new Text();

        @Override
        protected void map(LongWritable key, Text value, Context context)
                throws IOException, InterruptedException {

            // 1 拿到的是上一个统计程序输出的结果,已经是各手机号的总流量信息
            String line = value.toString();

            // 2 截取字符串并获取电话号、上行流量、下行流量
            String[] fields = line.split("\t");
            String phoneNbr = fields[0];

            long upFlow = Long.parseLong(fields[1]);
            long downFlow = Long.parseLong(fields[2]);

            // 3 封装对象
            bean.set(upFlow, downFlow);
            v.set(phoneNbr);

            // 4 输出
            context.write(bean, v);
        }
    }

    static class FlowCountSortReducer extends Reducer<FlowBean, Text, Text, FlowBean> {

        @Override
        protected void reduce(FlowBean bean, Iterable values, Context context)
                throws IOException, InterruptedException {
            context.write(values.iterator().next(), bean);
        }
    }

    public static void main(String[] args) throws Exception {
        // 1 获取配置信息,或者job对象实例
        Configuration configuration = new Configuration();
        Job job = Job.getInstance(configuration);

        // 6 指定本程序的jar包所在的本地路径
        job.setJarByClass(FlowCountSort.class);

        // 2 指定本业务job要使用的mapper/Reducer业务类
        job.setMapperClass(FlowCountSortMapper.class);
        job.setReducerClass(FlowCountSortReducer.class);

        // 3 指定mapper输出数据的kv类型
        job.setMapOutputKeyClass(FlowBean.class);
        job.setMapOutputValueClass(Text.class);

        // 4 指定最终输出的数据的kv类型
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(FlowBean.class);

        // 5 指定job的输入原始文件所在目录
        FileInputFormat.setInputPaths(job, new Path(args[0]));

        Path outPath = new Path(args[1]);
//        FileSystem fs = FileSystem.get(configuration);
//        if (fs.exists(outPath)) {
//            fs.delete(outPath, true);
//        }
        FileOutputFormat.setOutputPath(job, outPath);

        // 7 将job中配置的相关参数,以及job所用的java类所在的jar包, 提交给yarn去运行
        boolean result = job.waitForCompletion(true);
        System.exit(result ? 0 : 1);
    }
}

[/collapse]
[collapse title=”FlowBean”]

package com.kami.demo03;

import org.apache.hadoop.io.WritableComparable;

import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;

/**
 * @version v 1.0
 * @Author kamisamak
 * @Date 2020/6/17
 */
public class FlowBean implements WritableComparable {

    private long upFlow;
    private long downFlow;
    private long sumFlow;

    // 反序列化时,需要反射调用空参构造函数,所以必须有
    public FlowBean() {
        super();
    }

    public FlowBean(long upFlow, long downFlow) {
        super();
        this.upFlow = upFlow;
        this.downFlow = downFlow;
        this.sumFlow = upFlow + downFlow;
    }

    public void set(long upFlow, long downFlow) {
        this.upFlow = upFlow;
        this.downFlow = downFlow;
        this.sumFlow = upFlow + downFlow;
    }

    public long getSumFlow() {
        return sumFlow;
    }

    public void setSumFlow(long sumFlow) {
        this.sumFlow = sumFlow;
    }

    public long getUpFlow() {
        return upFlow;
    }

    public void setUpFlow(long upFlow) {
        this.upFlow = upFlow;
    }

    public long getDownFlow() {
        return downFlow;
    }

    public void setDownFlow(long downFlow) {
        this.downFlow = downFlow;
    }

    /**
     * 序列化方法
     * @param out
     * @throws IOException
     */
    @Override
    public void write(DataOutput out) throws IOException {
        out.writeLong(upFlow);
        out.writeLong(downFlow);
        out.writeLong(sumFlow);
    }

    /**
     * 反序列化方法 注意反序列化的顺序和序列化的顺序完全一致
     * @param in
     * @throws IOException
     */
    @Override
    public void readFields(DataInput in) throws IOException {
        upFlow = in.readLong();
        downFlow = in.readLong();
        sumFlow = in.readLong();
    }

    @Override
    public String toString() {
        return upFlow + "\t" + downFlow + "\t" + sumFlow;
    }

    @Override
    public int compareTo(FlowBean o) {
        // 倒序排列,从大到小
        return this.sumFlow > o.getSumFlow() ? -1 : 1;
    }
}

[/collapse]
[/infobox]
[infobox title=”自定义局部排序”]
不同省份输出文件内部排序(部分排序)
要求每个省份手机号输出的文件中按照总流量内部排序。
基于需求3,增加自定义分区类即可。
[collapse title=”FlowSortPartitioner”]

package com.kami.demo03;

/**
 * @version v 1.0
 * @Author kamisamak
 * @Date 2020/6/17
 */

import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Partitioner;

public class FlowSortPartitioner extends Partitioner<FlowBean, Text> {

    @Override
    public int getPartition(FlowBean key, Text value, int numPartitions) {

        int partition = 0;
        String preNum = value.toString().substring(0, 3);

        if (" ".equals(preNum)) {
            partition = 5;
        } else {
            if ("136".equals(preNum)) {
                partition = 1;
            } else if ("137".equals(preNum)) {
                partition = 2;
            } else if ("138".equals(preNum)) {
                partition = 3;
            } else if ("139".equals(preNum)) {
                partition = 4;
            }
        }
        return partition;
    }
}

[/collapse]
在Driver中添加分区类
[kbd]job.setPartitionerClass(FlowSortPartitioner.class);
job.setNumReduceTasks(5);[/kbd]
[/infobox]
from:https://www.cnblogs.com/frankdeng/p/9256252.html


已发布

分类

, ,

作者:

标签

评论

发表回复

您的电子邮箱地址不会被公开。 必填项已用*标注